
                              
 

  
AD_________________ 

 
 
Award Number:  W81XWH-12-1-0591 
 
 
 
TITLE:   Organizing the Cellular and Molecular Heterogeneity in High-Grade Serous 
Ovarian Cancer by Mass Cytometry 
 
 
 
PRINCIPAL INVESTIGATOR:   Garry P. Nolan, Ph.D.  
 
 
 
CONTRACTING ORGANIZATION:  The Leland Stanford Junior University 
                                                          Stanford, CA  94305-2004 
 
 
REPORT DATE: October 2013 
 
 
TYPE OF REPORT: Annual 
 
 
PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
                                Fort Detrick, Maryland  21702-5012 
             
  
 
DISTRIBUTION STATEMENT: Approved for Public Release;  
                                                  Distribution Unlimited 
 
 
The views, opinions and/or findings contained in this report are those of the author(s) and 
should not be construed as an official Department of the Army position, policy or decision 
unless so designated by other documentation. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE  
01/Oct/2013 

2. REPORT TYPE 
Annual 

3. DATES COVERED  
30 Sep 2012 – 29 Sep 2013 

4. TITLE AND SUBTITLE 
Organizing the Cellular and Molecular Heterogeneity in High-Grade Serous Ovarian 
Cancer by Mass Cytometry 

5a. CONTRACT NUMBER 

 
 

5b. GRANT NUMBER  W81XWH-12-1-0591
  

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
Garry P. Nolan, Ph.D.  

  
 

5d. PROJECT NUMBER 
 

Wendy J. Fantl, Ph.D. 5e. TASK NUMBER 
 

 
E-Mail:  gnolan@stanford.edu 
 
 

5f. WORK UNIT NUMBER 
 
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

 
  

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

The Leland Stanford Junior University 
Stanford, CA 94305-2004 

 
 
 
 
 

 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
U.S. Army Medical Research and Materiel Command 
 

  
Fort Detrick, Maryland  21702-5012   

  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
   12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited  
 
 
 
 

13. SUPPLEMENTARY NOTES 
  

14. ABSTRACT     

Primary ovarian cancer (OC) represents a complex set of stem cell and cancer cell phenotypes embedded in a 
mixture of stromal and infiltrating immune cells.  This grant develops techniques and approaches using mass 
cytometry that organize the heterogeneity within and between patient tumors to enlighten mechanisms and 
clinical opportunities in the apparent chaotic structure of the cancer.  (1)  A preliminary mass cytometry OC 
dataset by a “social clustering” strategy finds cell neighborhoods in high dimensional space reveals that 18 out of 
20 samples had clusters of apparent stem-cell expressing deterministic combinations of stem cell markers. (2) 
Two high dimensional antibody panels were optimized and assembled to interrogate the tumor and immune cell 
compartments. (3) Indivumed (Hamburg Germany) is established as source for acquiring high quality HG-SOC 
primary specimens from single-cell dissociated tumors obtained within 3 hours of resection. (4) A QC procedure 
was established that surveys tumor samples (including epithelial, mesenchymal and immune cells) prior to their 
resection (using Abs against cleaved cCaspase 3, cleaved cPARP, vimentin, E-cadherin and CD45) to focus 
resection procedures on viable non necrotic tissue. (5) Eight key cell lines which bear remarkable genetic 
similarity to primary HG-SOC tumors have been obtained [1] as standards for primary tumors. 

 
 15. SUBJECT TERMS 
Tumor initiating cells, Modularity Optimization in Networks of Cellular Phenotypes (MONOCLE), primary diagnostic samples, 
Indivumed, dissociation conditions, evaluation of viability and apoptosis, immunohistochemistry, validation of tumor antibodies, 
validation of immune cell antibodies, ovarian cancer cell lines, future plans. 
 16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
USAMRMC  

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

 
UU 

  
     107 

19b. TELEPHONE NUMBER (include area 
code) 
 

 



 
 
 

Table of Contents 
 

 
                                                                                                                                Page 
 
 
Introduction…………………………………………………………….………..….. 4  
 
Body………………………………………………………………………………….. 5  
 
Key Research Accomplishments………………………………………….……..   10 
 
Reportable Outcomes………………………………………………………………      10 
 
Conclusion……………………………………………………………………………  11 
 
References……………………………………………………………………………. 12 
 
Appendices……………………………………………………………………………  14 
          



INTRODUCTION  

High-grade serous ovarian cancer (HG-SOC) is the most common form of ovarian cancer and the 
majority of patients presenting with the disease respond well to initial treatment. However 70-90% of 
patients subsequently relapse and die of their disease [2, 3].  

At present there is no consensus regarding the cell type that gives rise to HG-SOC.   Several hypotheses 
have been proposed including ovarian surface epithelia and the fimbriae epithelia of the fallopian tube 
[4-6]. What is apparent is the diverse pathophysiology of the disease-- with ovarian cancer 
demonstrating a multitude of molecular and cellular alterations.  This so-called heterogeneity has 
confounded attempts to establish the cellular origin of HG-OC and the differentiation stages at which 
“stemness” arises has hampered the search for successful treatment regimens, and begs the question of 
how we will bring order to this heterogeneity.  

Therefore, with a need to organize the diverse nature of OC as the driving force for our research 
strategy, our approach has been to dismantle the tumor into its constituent single cells, to undertake 
deep phenotyping of each based on as many as 40 features per cell in a high throughput format, and 
then compare cell types both within as well as across tumors.  To ultimately tackle both these issues my 
lab is using a transformative proteomics technology termed mass cytometry, (aka Cytometry by Time of 
Flight (CyTOF)) which permits simultaneous measurements of up to 40 parameters per single-cell 
(expected to increase to ~70 primary channels and 200 or more pseudo channels), to provide a system-
wide view of HG-SOC.  Constituent single cells from disaggregated ovarian tumors are analyzed to enable 
the delineation of the molecular and cellular basis of tumor heterogeneity in HG-SOC. This information is 
essential for permitting early diagnosis, chemoprevention, risk assessment, development of new 
therapies and personalized treatment regimens for this deadly disease. 
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BODY  

D.1  Background 
Single mass cytometry facilitates high-dimensional, quantitative analysis of the effects of bioactive molecules on 
cell populations at single-cell resolution. Datasets are generated with antibody panels (upwards of 40) in which 
each antibody is conjugated to a polymer chelated with a stable metal isotope, usually in the Lanthanide series 
of the Periodic Table [7-10] and Appendix A for copy of reference 8. The antibodies recognize surface markers to 
delineate cell types, such as immune, epithelial, mesenchymal, and intracellular signaling molecules demarcating 
multiple cell functions such as survival, DNA damage, cell cycle and apoptosis. By measuring all these parame-
ters simultaneously, the signaling network state of an individual cell can be measured. A proof-of-principle for 
this technology described the immune continuum within a healthy bone marrow sample [11].  
The body of the text will discuss progress over the last year (and current ongoing efforts) which pertains largely 
to Task 1.    Specifically: 
• Subtask 1a: Establish conditions for dissociation of solid tumors into single cells.  
• Subtask 1b: Select a panel of extracellular modulators with which to measure signaling responses (done in the context 

of titrating the antibodies). 
• Subtask 1c: Select two panels of ~60 antibodies each (this should have been 40 in the original SOW). 
• Subtask 1d: We have submitted and gained approval for the necessary HRPO (IRB) and the ACURO.  
• Subtask 1e: Acquire 10 primary diagnostic (no treatment) ovarian tumor or ascites samples with matched blood sam-

ples (Neel lab at UHN Toronto, and Berek at Stanford). In a new development we are now acquiring samples from Indi-
vumed in Hamburg Germany. 

• Subtask 1f: Develop and apply new informatics tools and algorithms. 
• Subtask 2b: Cell line validation of monitoring reagents for extracellular modulators of signaling pathways. 

D.2  Foundational Experiments  

In earlier studies that were foundational for this award the Neel lab performed high throughput screening of 
surface marker expression in primary HG-SOC samples by fluorescence-based flow cytometry. The data identi-
fied a number of markers that were either expressed consistently in low percentages of cells (“minority mark-
ers” n=65) or were variably expressed in different cells (“variable markers” n=35) across different samples. Such 
markers would either represent spurious expression of proteins with little to no relevance to OC, or potentially 
represented markers associated with rare subpopulations of some benefit to the continuance of the tumor.  A 
CyTOF panel was assembled, comprised of thirty-one metal-conjugated antibodies, against a set of these mark-
ers (from the high throughput screen) in combination with Pax-8, (a transcription factor representing cells of 
Mullerian origin), potential stem cell markers (e.g., Sox2, Nanog, Bmi-1, unphospho β−Catenin) and DNA dam-
age (pATM, pH2AX) and cell cycle proteins (cyclin B1, pRb and pHH3) for experimentation and analysis of 21 
primary HG-SOC tumors and 30 ovarian cancer cell lines carried out in the Nolan Lab at Stanford. 

In order to capture the depth of information that a CyTOF dataset provides there are informatics challenges at 
several levels.  These include the multi-dimensional nature of the data, which results in the need to analyze mil-
lions of single-cell measurements, the distorted space of the data distribution, owing to the differential dynamic 
range of each antibody, differences in cell size, etc.), and the possibility that sub-populations assume different 
shapes in multi-dimensional space and include vastly different numbers of cells. It is therefore necessary to have 
a number of complementary, overlapping and mutually exclusive computational approaches for analyzing CyTOF 
data. To date there have been several approaches taken to analyze CyTOF data [12-15].  

The Pe’er Lab developed a new algorithm Modularity Optimization in Networks of Cellular Phenotypes 
(MONOCLE) that adapts network theory to analyze mass cytometry data, employing a “Facebook”-like strategy.  
First, “k-neighborhoods” are assigned for each single-cell measurement (in 31 parameter-space).  A pilot density 
of k = 20-50 is employed (i.e., the 20-50 nearest cells) and Mahalanobis, rather than Euclidean, distances are 
used to identify neighbors in the distribution.  This innovation deals with the different dynamic ranges of anti-
body intensity/cell size defined above.  A “Similarity Score,” defined as the intersection of k-neighborhoods, is 
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then calculated for each pair of points.  The Louvain method of community detection is then employed to identi-
fy clusters in the network. 

Preliminary data, applying MONOCLE to the CyTOF data resulted in the identification of 34 clusters of cells.  Sev-
en of these were CD45+, representing the immune cell infiltration in the primary tumors; gratifyingly, these clus-
ters were recognized as distinct from the cell lines and the other, non-lympho-hematopoietic cells in the primary 
tumor samples.  Six other clusters were Vimentin+, which could indicate infiltrating stroma or epithelial-
mesenchymal-like properties in the primary tumor. The remaining clusters varied in size, but four were generally 
small and enriched in stem cell markers.  Remarkably, 18/20 primary sample had significant populations of at 
least one of these “stem cell-like” clusters, and in most samples, these clusters were mutually exclusive (i.e., the 
sample had one or at most two types of clusters, but not all four). 

These findings are intriguing for several reasons. First, they are consistent with previous work from the Neel lab 
indicating that the surface phenotype of tumor initiating cells (TIC) from HG-SOC is heterogeneous [16]. Second, 
they emphasize the potential benefit of coupling analysis of putative functional stem cell markers (e.g., SOX2, 
etc.) to surface antibody assessment. Third, and most interestingly, they suggest clear sorting strategies for en-
riching such clusters from primary HG-SOC samples, experiments of which are in progress in the Neel lab. 

Given the above results, and the potential advantage of using functional markers to identify/enrich for TIC, the 
Neel lab, is taking several additional approaches in parallel.  Studies in hematopoietic stem cells, T cell-ALL and 
other malignancies suggest that low ROS (reactive oxygen species) might be associated with the stem cell state.  
Indeed, in initial experiments, the Neel lab has found that sorting for cells with low ROS using the fluorescence 
marker H(2)DCF-DA (dihydrodichlorofluorescein diacetate (DCF) enriches for cells with Sox2 and ASCL1 tran-
scripts.  We are currently examining testing whether low ROS levels can be used to enrich for TIC (using our xen-
ograft assay[16]), as well as searching directly for additional surface markers that correlate with SOX2 expression 
and/or ROS levels.  Such markers will be iteratively incorporated into CyTOF experiments in collaboration with 
the Nolan lab to optimize our ability to identify, quantify, and study the properties of HG-SOC TIC. 

D.3 Parallel Studies in the Nolan Lab Landscaping HG-SOC primary samples  

Using an alternative and complementary strategy, the Nolan Lab is analyzing primary diagnostic ovarian tumor 
samples using an antibody panel designed to interrogate the biology based on prior knowledge in the literature. 
In this first year we have taken considerable measures to ensure data collected is of high value.  This means 
strict control over the sample acquisition process, stage-specific tests during the protocol to ensure we are work-
ing with live cells, and testing of every single reagent for its validity to bind the epitope against which it was orig-
inally raised.  We believe these initial steps—though tedious—are critical to “trusting” the data from such pre-
cious samples as those obtained from patients with fatal diseases. 
D.3.1 Acquisition of primary diagnostic HG-SOC samples from Indivumed, Hamburg Germany 

Indivumed (Indivumed.com), based in Hamburg, Germany has developed a biobank in which stringent pro-
cessing protocols are applied to fresh primary human samples (mostly tumors) such that they retain comparable 
patterns of biomolecules (DNA, RNA and protein) as they were in the human body. Importantly, sample collec-
tion is based on the following criteria: 

• Team of on-call nurses 
• Tight communication and timing 

with surgery team 
• Present during entire surgery 
• Record data such as blood supply 

clamping, etc. 
• First to handle tissue samples after 

surgery 
• All processing done on-site, in room 

adjacent to OR – tight timing 
• Record observations, location of 

sample collection, timing, etc. 
• Full clinical annotation 

Sample ID TB Neg Aqua- Aqua-/PARP- Aqua- Aqua-/PARP-
4079 37% 58% 15% 11% 4%
4080 90% - - 42% 11%
4081 86% 87% 13% 33% 12%
B1930 lib 79% 78% 26% - -
B1930_milt 77% 84% 27% - -
R847 lib 77% 76% 21% 30% 11%
R847 milt 80% - - 14% 4%

Fixed Samples Viably Frozen Samples

 
Table 1: Viability of CRC samples fixed and frozen post-dissociation (Aqua) match 
viability post-dissociation (TB: trypan blue), although PARP cleavage is high. Viable 
freezing results in large decrease in viability. See text. 
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In her prior employment in the Biotech arena, Dr Fantl worked with Indivumed and therefore capitalized on a 
former very productive relationship to establish a new collaboration to procure high quality HG-SOC samples   
for this award. One hurdle to overcome was the preparation of viable single cells from solid tumors. Preparatory 
experiments were performed in the Nolan lab testing a matrix of conditions, based on enzymatic and mechani-
cal dissociation protocols using human ovarian tumor samples from mouse xenografts. A graduate student from 
the Nolan Lab spent one week at Indivumed to optimize and transfer the procedure “on-site”. In summary, giv-
en the prevalence of colorectal cancer (CRC) cases over ovarian, the dissociation conditions were established at 
Indivumed using CRC samples. Importantly, CRC and HG-SOC are considered “soft tumors”. No ovarian cases 
presented during our post-doc’s visit to Indivumed. Based on a comparison of conditions, in our current protocol 
samples are dissociated mechanically in a Milteny “gentleMACS” dissociator in the presence of a Milteny propri-
etary protease mix and then incubated with rotation for 30 minutes all according to the manufacturer’s instruc-
tions. Importantly single cell suspensions of HG-SOC were generated within 3 hours post resection. This will be 
standard operating procedure for acquisition of all our primary tumor samples. 

D.3.2. Testing samples for viability post-dissociation 

By way of introduction, we are using trypan blue, Aqua (for fluorescence-based flow cytometry) and cisplatin 
(for CyTOF) to measure the viability status of the samples. These reagents operate on the principle that a com-
promised cell with a damaged plasma membrane permits reagent entry into the cytoplasm, whereas a healthy 
cell with an intact plasma membrane does not.  Good viability therefore correlates with lack of staining. At Indi-
vumed, immediately after dissociation, the viability of the cells was determined by trypan-blue counting of a 
small aliquot. Samples were then exposed briefly to aqua or cisplatin, reagents that allow viability to be deter-
mined by fluorescence or mass cytometry respectively at Stanford [17]. At Indivumed, samples were either fixed 
in paraformaldehyde (PFA) and frozen or viably frozen in DMSO/fetal bovine serum as per Nolan lab established 
protocols [18]. Several important observations were made, primarily with the colon samples (Table 1), but rele-
vant to the HG-SOC samples of which six are now at Stanford. 1) Trypan Blue staining demonstrates that cells are 
viable post-dissociation. 2) Fixation and freezing immediately post-dissociation results in “capturing” cells in a 
viable form suitable for cytometry (Aqua- column, red outline) 3) Significant cell death (apoptosis and necrosis) 
occurs after a “viable” freezing procedure (blue outline around last two columns). We also have this information 
for 4 ovarian samples in which the Aqua- cells were ~ 10% for 2 samples and ~60% for another 2. 4) In spite of 
good viability of fixed samples post thaw, a percentage of cells have undergone apoptosis (aqua-/PARP-column 
within red outline). Note: number of initial samples represents initial studies that set the groundwork for later 
experimental design. 

D.3.3. Cells undergoing apoptosis pre-
exist in primary tumors in situ 

That levels of cleaved PARP were in-
creased in Aqua negative cells led to the 
question of whether this “apoptotic 
state” pre-exists within the tumor or is 
introduced during the single-cell dissocia-
tion procedure. To evaluate this possibil-
ity, immunohistochemistry was per-
formed with an antibody against cCaspa-
se 3 on formalin fixed paraffin embedded 
sections (FFPE) at Indivumed. Apoptotic 
cells were detected in 7 ovarian cancer 
cases, whereas one case was completely 
negative for cleaved Caspase-3. Two cas-
es (R873 and R892) exhibited maximal 5% 
of apoptotic cells. In further two cases 
(X2617 and x2619) 10% of apoptotic cells 

 
Table 2 Histopathological evaluation of anti-Caspase-3, cleaved immunohisto-
chemistry. (0 = negative, 1+ = weak, 2+ = moderate, 3+ = strong, x = positively 
stained) 
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were detected. A high percentage (20%, 30% and 50%) of apoptotic cells was determined in three cases (Z289, 
2623 and Z301). The results for HG-SOC samples were evaluated independently by two pathologists (Table 2). 
These samples will be evaluat-
ed by flow in the coming 
weeks. 

D.3.4. Reagent validation and 
characterization 

Antibodies: We have devel-
oped two antibody panels 
against tumor cells and one 
against the infiltrating immune 
cells. Antibodies were either, 
purchased as metal-
conjugates, or conjugated by 
us to metal-chelating polymers 
and were all titrated against 
positive and negative controls 
to optimize signal to noise (see 
appendix for titrations). Multi-
ple antibody clones were test-
ed from different vendors, the 
details of which are given in 
Table 3 (Tumor antibody pan-
el) and Table 4 (Immune pan-
el). Two exemplar titrations 
are shown for CD133, a stem 
cell surface marker (Figure 1a) 
and pH2AX, a transducer of 
DNA damage (Figure 1b), both 
critical components of ovarian 
cancer biology. Our complete 
sets of titrations are in Appen-

dix A. 

Multiple antibody clones were tested from 
different vendors, the details of which are giv-
en in Table 3 (Tumor panel) and Table 4 (Im-
mune panel). Two exemplar titrations are 
shown for CD133, a stem cell surface marker 
(Figure 1a) and pH2AX, a transducer of DNA 
damage (Figure 1b), both critical components 
of ovarian cancer biology. Our complete sets 
of titrations are in Appendix B and C respec-
tively. 

 

 

 

 

  
Figure 1a: The antibody concentra-
tion selected was 4 µg/ml just at 
the plateau. 

Figure 1b:  The antibody concentration 
selected was 4 µg/ml giving a signal to 
noise ratio of 80. 

Table 3: Tumor antibody Panel: Antibodies from DVS were purchased as metal 
conjugates. All others were conjugated and titrated in the Nolan Lab. 

Mass Element Antibody Clone Vendor Catalogue Number Titration Cell Lines 
113 In Not used
115 In Vimentin D21H3 CST 5741BF OVCAR3, NIH3T3
139 La CD45 H130 Biolegend 304002 OVCAR3, PBMCs
141 Pr N Cadherin 8C11 BD 561553  HeLa, OVCAR
142 Nd c-Casp 3 C92-605 BD 624084 Jurkat,24hr  Etoposide +/-
143 Nd CA125 X75 (3C8/4) Gen Way GWD-17DD7A U937, OVCAR3
144 Nd CD90 5E10 Biolegend 328102 K562, Jurkats
145 Nd p-AMPK (pT172) 40H19 CST 2535BF U937, 24hr AICAR+/-
146 Nd p-ATM (pS1981) 10H11.E12 Millipore 05-740 Jurkat, 4hr Etoposide +/-
147 Sm p-H2AX (pS139) JBW301 Millipore 05-636 Jurkat, 4hr Etoposide +/-
148 Nd Total Cyclin B1 GNS-1 BD 554176 HCT116, Nocodazole +/-
149 Sm p-NFkB (pS529) K10-895.12.50 BD 558393 Jurkat, TNF +/- 
150 Nd pBCL2 (S70) 5H2 CST 2827BF OVCAR3, Taxol +/-
151 Eu p-ERK (pT202/pY204) DA3.14.4E CST 4370BF U937, PMA +/-
152 Sm Ki67 (total) B56 BD 556003 HCT116, Nocodazole +/-
153 Eu p-CHK2 (pT68) C13C1 CST 2661BF HCT116, Nocodazole +/-
154 Sm pSTAT3(Y705) 4 P-STAT3 BD 6240484 Jurkats, PVO4  +/-
155 Gd CD133 AC133 Miltenyi 130-090-422 Jurkats, CaCo
156 Gd CD10 Hl10a Biolegend 312202 Jurkats, REH
157 Gd SNAIL 20C8 eBiosciences 14-9859-82 HCT116, NIH3T3
158 Gd E-Cadherin 2.40E+11 CST 3195BF Jurkats, OVCAR3
159 Tb p-Akt (pS473) D9E CST 4060BF Jurkat, PVO4 +/-
160 Gd Sox2 O30-678 BD 561469 ESC, +/- LIF
161 Dy cMYC D84C12 CST 5605BF MEF, + DOX (Day 2)
162 Dy pSTAT5(Y694) 47 BD 6240484 Jurkats, PVO4 +/-
163 Dy Endoglin 43A3 Biolegend 323202 U937, HELA
164 Dy CD24 ML5 Biolegend 311102 PBMCs, B vs T.
165 Ho p-Rb (pS807/811) J112-906 BD 558389 HCT116, Nocodazole +/-
166 Er CD44 BJ18 DVS 3166001B PBMCs, T vs Monos
167 Er PAX8 polyclonal Abcam ab97477 Jurkats, OVCAR3
168 Er CD13 L138 BD 624084 PBMCs
169 Tm p-CHK1 (pS345) 133D3 CST 2348BF Jurkat, Etoposide +/-
170 Er Non-phos β-Catenin D10A8 CST 8480BF HCT116, 293 +/- LiCl
171 Yb c-PARP (N214) 624084 BD 624084 Jurkat, 24hr  Etoposide +/-
172 Yb pS6 (pS235/pS236) N7-548 BD 624084 Jurkats, PMA +/-
173 Yb Mesothelin MB-G10 Rockland 200-301-A87 OVCAR, HeLa
174 Yb pCREB (S133) 8763 CST 9198BF Jurkat, PMA +/-
175 Lu Total p53 1C12 CST 2524BF Jurkat, Etoposide +/-
176 Yb pHH3 (S28) HTA28 Biolegend 641002 HCT116 Cells +/- Nocodazole
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Acquisition of ovarian cancer cell lines 

In a  recent publication, a panel of 47 ovarian cancer cell lines from the Broad-Novartis Cancer Cell Line Encyclo-
pedia (CCLE) were analyzed in order to identify those with highest genetic similarity to primary HG-SOC tumours 
1, 19]. The study compared copy-number changes, mutations and mRNA expression profiles of  with primary 
HG-SOC samples from The Cancer Genome Atlas (TCGA) database [20]. Unexpectedly, the findings revealed pro-
nounced differences in molecular profiles between commonly used ovarian cancer-cell lines and HG-SOC tumor 
samples. Furthermore, several rarely used cell lines were identified that more closely resemble cognate tumor 
profiles than commonly used cell lines.  

Therefore, we worked closely with the Japanese Collection of Research 
Biosources, part of the National Institute of Biomedical Innovation in Osa-
ka, Japan, Public Health England, Fox Chase Cancer Center, and ATCC to 
procure 8 (KURAMOCHI, OVSAHO, COV362, OVCAR4, TYKNU (platinum-
sensitive and resistant), OVKATE, CAOV3) of the 13 cell lines that feature as 
bearing the greatest similarity to primary HG-SOC tumors (Figure 2). We 
are acquiring SNU119 from Korea. These cell lines will always we included 
with any batch of primary HG-SOC tumor samples that are analyzed by 
mass cytometry. 

 

 

E.  FUTURE PLANS 

Over the past year, 
we have performed 
extensive validation 
of reagents and ex-
perimental proce-
dures. Within the 
next year, we antic-
ipate performing 
CyTOF analysis on 
20 to 30 primary 
tumors (Indivumed) 
and 10 to 20 ascites 
that will be ac-
quired at Stanford. 
We will determine 
both the tumor and 
infiltrating immune 
cell landscape. 

For each primary 
tumor sample, IHC 
will be performed 
on FFPE samples 
prepared immedi-
ately post tumor 
resection with anti-
bodies against CD45 
(to gate immune 

 
Figure 2 Cell lines with greatest similarity 
to primary HG-SOC [18, 19]. Figure taken 
from reference 18. 

Table 4: Immune cell antibody panel:  Antibodies from DVS were purchased as metal 
conjugates. All others were conjugated and titrated in the Nolan Lab. 
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and non-immune cell types, cPARP and cCaspase 3 (to determine the extent of apoptosis) and vimentin and E-
cadherin to determine potential epithelial and mesenchymal compartments. Furthermore, a small aliquot will be 
evaluated by fluorescence-based flow cytometry which along with cell scatter properties will be compared with 
the IHC data. The remainder of the sample will be designated for CyTOF analysis with the two panels. Wherever 
possible, triplicates for each sample will be analyzed. These analyses are designed to serve four purposes:   

1) Determine how comparable the sample being analyzed is to the tumor in situ   
2) Enumerate the immune and non-immune component of each tumor sample  
3) Landscape the surface phenotype and basal signaling states of the markers with potential information to 

be gained about: epithelial and mesenchymal cells as well as transitional EMT states (vimentin, e-
cadherin, endoglin, snail), TICs (NFkB, Sox2, Myc, β-catenin), cell of tumor origin (CA125 and meso-
thelin),  

4) The immune cell landscape in terms of specific immune cell subsets within and between different tumor 
and ascites samples. 

We are in regular contact with the Neel Lab to allow each group to incorporate relevant antibodies revealed 
their TIC studies.  Efforts are also placed on improving the viability of cells post freezing in DMSO/serum. This 
allows us to expose viable cells to stimuli, such as cytokines, growth factors and drugs, capitalizing on past work 
from the Nolan Lab that demonstrated how the magnitude of an evoked response by a cell can be correlated 
with clinical features [21-24] 

Additional CyTOF antibody panels will be built, based on what we learn from experiments in the Neel and Nolan 
labs, and also with emphasis on the stromal compartment. 

F. KEY RESEARCH ACCOMPLISHMENTS 
• Identification of stem-like clusters in 18/20 primary samples from the Neel/Nolan dataset 
• Application of MONOCLE to look at cell neighborhoods (Pe’er lab) 
• Identification and validation of Indivumed as a reliable source of high quality human specimens 

(supplies numerous Biotechs, Pharma and the NIH) 
• Validation and optimization of ~ 80 antibodies that have been assembled into a “tumor” and “im-

mune cell” panel 
• Acquisition of relevant HG-SOC cell lines [18] 

G. REPORTABLE OUTCOMES   

G.1a MANUSCRIPTS FUNDED BY THIS RESEARCH 

Bjornson, Z.B., G.P. Nolan, and W.J. Fantl, Single-cell mass cytometry for analysis of immune system functional 
states. Curr Opin Immunol, 2013. 25(4): p. 484-94. 

G.1b ABSTRACTS AND PRESENTATIONS 

Nolan: European Congress of Immunology, September 5-8, 2012 From Immune-Monitoring to Health Policy – 
What is the Future?, Glasgow, Scotland 

Nolan: From the laboratory to the clinic, September 10-13, 2012 A definable “structure” for the immune system 
and cancers at the single cell level, Trinity College, Oxford, England 

Nolan: Scripps Research Institute Guest Speaker, January 17, 2013, A Systems Structure for Immunity and Can-
cer at the Single Cell Level, Jupiter Beach, FL 

Nolan: CELLTech 2013, January 23, 2013, Single Cell Systems-Structured View of Immunity & Cancer, San Diego, 
CA 

Nolan: Personalized Medicine World Congress, January 28-29, 2013, The Network as Symptom, Sentinel, Diag-
nostic & Target, Mountain View, CA 

Nolan: 9th Spring School on Immunology, March 12-14, 2013, A Definable “Structure” for the Immune System 
and Cancers at the Single Cell Level, Ettal, Germany 
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Nolan: LINCS Data Forum, March 20-21, 2013, Without DEVIATION from the norm there can be no Evolution, 
Boston, MA 

Nolan: American Association for Cancer Research Annual Meeting, April 7-10, 2013, A systems-level view of ovar-
ian cancer and AML at the single cell level by mass cytometry, Washington, DC 

Nolan: Karolinska Institutet, May 31, 2013, Mass Cytometry: Next generation flow cytometry, Stockholm, Swe-
den 

Nolan: 3rd Annual Cambridge Stem Cell Institute International Symposium, July 8, 2013, Single Cell Systems 
Structure View of Stem Cells and Cancer Cambridge University, England 

Nolan: Frontiers of Single Cell Analysis Conference, September 5-7, 2013, A single cell systems view of cancer 
and immunity, Stanford, CA 

Fantl: Systems Medicine in Cancer, June 14-15, 2013 Deep Single Cell Profiling by Mass Cytometry, Langenbeck-
Virchow-Haus Berlin 

Fantl: Molecular Therapeutics of Cancer Gordon Conference, July 14 – 18, 2013 Deep Single Cell Profiling by 
Mass Cytometry, Boulder, Colorado 

Neel: Advances in Ovarian Cancer Research, AACR, September 18 – 21, 2013 Analyzing the Cellular Basis for 
Heterogeneity in Serous Ovarian Carcinoma, Miami, FL 

 

G.2 LICENSES APPLIED FOR AND/OR ISSUED 

N/A 

G.3 DEGREES OBTAINED OR SUPPORTED BY THIS AWARD 

N/A 

G.4 DEVELOPMENT OF CELL LINES, TISSUE OR SERUM REPOSITORIES 

N/A 

G.5 INFORMATICS SUCH AS DATABASES AND ANIMAL MODELS, etc. 

All data from these studies is available on Cytobank.org 

G.6 FUNDING APPLIED FOR BASED ON THIS AWARD 

N/A 

G.7 EMPLOYMENT OR RESEARCH OPPORTUNITIES APPLIED FOR AND/OR RECEIVED BASED ON 
EXPERIENCE/TRAINING SUPPORTED BY THIS AWARD 

N/A 

 

H. CONCLUSION 

The preliminary data have identified: i) the experimental variables to be addressed ensuring rigor and conse-
quently confidence in understanding the biology of the disease (rather than experimental artifacts) ii) a new al-
gorithm identified potential stem-like cell subsets in a preliminary study with primary samples. This critical in-
formation has been incorporated into the design of the upcoming experiments. Thus addressing the point of “so 
what”, we are set to carry out studies on high quality viable HG-SOC single cells prepared from clinically anno-
tated samples where the parameters measured at the single-cell level will provide critical information about the 
disease and actionable steps to benefit patients. 
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ScienceDirect
Mass cytometry facilitates high-dimensional, quantitative

analysis of the effects of bioactive molecules on cell

populations at single-cell resolution. Datasets are generated

with panels of up to 45 antibodies. Each antibody is conjugated

to a polymer chelated with a stable metal isotope, usually in the

lanthanide series of the periodic table. Antibody panels

recognize surface markers to delineate cell types

simultaneously with intracellular signaling molecules to

measure biological functions, such as metabolism, survival,

DNA damage, cell cycle and apoptosis, to provide an overall

determination of the network state of an individual cell. This

review will cover the basics of mass cytometry as well as outline

assays developed for the platform that enhance the

immunologist’s analytical arsenal.
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Fluorescence-based flow cytometry has proven an invalu-

able technology for both immunologists and clinicians

alike [1]. Importantly, it provides crucial biological infor-

mation at the single-cell level regarding ploidy, immu-

nophenotype, frequency of cell subsets, expression levels

of proteins, as well as functional characterization [2–7].

Furthermore, the potential of this technology can be

significantly extended by interrogating single cells not

only in their basal state but also after their exposure to

exogenous stimuli. The latter has given rise to fluor-

escence-based phospho-flow cytometry, which has

enabled determination of the activity of intracellular

pathways [8,9�,10,11,12�,13�,14�,15,16,17]. Interrogated

revelation of cellular states is key to the mechanistic

understanding of the immune system perturbed during

disease, and to elucidating the positive or negative effects

on signaling pathways wherein cells have been exposed to
Current Opinion in Immunology 2013, 25:484–494 
therapeutic and potential therapeutic agents in vitro or in
vivo [14�,18–20].

However, as powerful as fluorescence-based flow cyto-

metry can be, it falls somewhat short of uncovering the

well-recognized complexity of the immune system when

determined simultaneously with intracellular network

states. The primary drawback of traditional fluor-

escence-based flow cytometry is ironically the same tool

that has enabled it to be so useful for nearly three

decades: the number of markers that can be simul-

taneously analyzed is inherently limited by spectral

overlap. Measurement beyond three fluorophores

becomes more complex as more parameters are added,

involving corrections for spectral overlap as well as

appreciation for the auto-fluorescence of certain cell types

[21,22]. Even with such corrections and understanding,

the practical limit of flow cytometry is about ten markers

wherein significant training or effort is involved in design-

ing such panels. Investigation of intracellular pathways

under such restrictions is unwieldy, since the bulk of the

parameters for a fluorescence-based analysis will be

assigned to surface markers that call out specific cell

types, leaving only a few channels to measure phosphoryl-

ation states or levels of intracellular proteins. So where do

we go from here?

A new generation of single-cell analysis technology

called mass cytometry overcomes most of these limita-

tions (Figure 1). The CyTOF (Cytometry by Time Of

Flight) is a mass spectrometer-flow cytometer hybrid

instrument that uses stable isotopes instead of fluoro-

phores as reporters [23,24,25,26,27,28�,29,30]. Mass

cytometry offers a number of significant advantages

compared to fluorescence-based applications. Of fore-

most importance, due to their discrete readouts, use of

isotopes as reporters enables a significant increase in

the number of measurable parameters per cell. Further-

more, the platform is quantitatively accurate with linear

sensitivity across four orders of magnitude. Further

advances such as increased numbers of deployable

isotopes, novel nano-crystal configurations and compu-

tational tools promise to extend mass cytometry well

into the ‘omics’ arena and provide system-wide views

of immune function in healthy donors and patients

suffering from infection, inflammation or cancer.

Basic concepts of mass cytometry
To address the limitation of traditional fluorescence-

based cytometry, namely the number of simultaneously
www.sciencedirect.com
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Figure 1
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Mass cytometry enables high-dimensional analysis of diseases and therapeutic responses. Diseases including cancer and infections perturb cellular

signaling. Mass cytometry provides a readout for up to 52 simultaneous measurements, of both disease-induced perturbations and importantly of

counter-perturbations induced by candidate therapeutics. Furthermore, the simultaneous inclusion of cell phenotype and cell cycle provide a more

detailed picture than possible before. After cells are stained with antibodies and other metallic assay reagents, they are introduced into the mass

cytometer as a stream of single cells, then atomized and ionized as they pass through the inductively coupled plasma (ICP) torch. Low-mass elements

(including carbon and nitrogen) are filtered out by a radio frequency quadrupole before entering the time-of-flight (TOF) detector. A high-speed, online

analysis system produces data equivalent to that of traditional fluorescence-based cytometry.
measured parameters, Scott Tanner and colleagues at the

University of Toronto embarked upon a remarkable adap-

tation of inductively coupled plasma mass spectrometry

(ICP-MS). ICP-MS is routinely used in the mining, metal-

lurgy and semi-conductor industries and is the method

of choice for measuring the elemental components of
www.sciencedirect.com 
materials since it can detect the contamination of, for

example, blood with lead and drinking water with arsenic,

beryllium or heavy metals. In ICP-MS, samples are vapor-

ized, atomized and ionized in plasma at temperatures

approximating that of the surface of the sun (7500 K).

The mass spectrometer can then resolve and quantify
Current Opinion in Immunology 2013, 25:484–494
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elemental components, on the basis of mass-to-charge ratio

(m/z), with a level of sensitivity at parts per quadrillion and

with no interference between channels.

Tanner and colleagues realized that incorporating such

attributes into flow cytometry might dramatically increase

the number of parameters that could be measured per

single cell. They reasoned that, rather than being con-

jugated to fluorophores, antibodies could be conjugated to

stable metal isotopes, such as lanthanides, that are absent

or at low abundance in biological systems, and then adapt

ICP-MS instrumentation for their detection at single-cell

resolution [23,27,31–33]. This was the foundational con-

cept upon which the mass cytometer was developed.

By tagging each antibody with a unique lanthanide iso-

tope, the readout from each isotope can be correlated with

a particular antibody, which in turn can be correlated to

levels of antigen associated with an individual cell. Thus,

the number of simultaneously measurable parameters per

cell is now only limited by the number of stable isotopes

suitable for conjugating to antibody reagents. For this to

be accomplished, two fundamental technical challenges

needed to be overcome. One was to develop reagents to

tag antibodies with stable metal isotopes. Another was to

adapt the ICP mass spectrometer to simultaneously

detect multiple isotope tags, in the form of an ion cloud,

associated with a single cell event.

In many respects the workflow for a mass cytometry

experiment is analogous to traditional flow cytometry

(Figure 1). By taking advantage of a long history of

fluorescence-based innovations, it has been possible to

‘recreate’ the assays of many reagents with isotope-

labeled tags. These adaptations as well as novel assays

specific to mass cytometry will be outlined below.

Attaching metal-chelating polymers to
antibodies
For the attachment of multiple atoms of a given isotope to

a selected antibody, acrylic acid polymers were synthes-

ized with a uniform number polymer units and function-

alized with multiple copies of a chelator, such as 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)

or diethylene triamine pentaacetic acid (DTPA), compa-

tible with the chemistry of trivalent metal lanthanide ions

[34]. The resultant chelated lanthanide has a Kd of 10�16

and is therefore nearly impervious to losses or exchanges

between other chelated metals within an antibody panel.

A terminal maleimide group on the polymer permits its

conjugation to selectively reduced disulfide groups in the

hinge region of the immunoglobulin heavy chain.

Typically four to five polymers bind to each antibody,

with each polymer chain capable of carrying up to 30

metal isotopes [32,34]. The first and current generation of

isotope-chelating polymers can bear up to 120 lanthanide
Current Opinion in Immunology 2013, 25:484–494 
ions per antibody molecule [34]. That, combined with the

level of ion transmission at 1 in 10,000, means the lower

limit of detection for any given cellular parameter is about

300–1000 target protein copies (comparable to many

fluorophores by traditional fluorescence). Unlike photo-

multiplier tubes in photon-driven cytometry which can

show non-linear sensitivity across the dynamic range, the

sensitivity of the ICP-MS readout is linearly proportional

to the number of elemental isotopes conjugated to each

antibody. Nevertheless, the sensitivity of lanthanide-con-

jugated antibodies is currently about two-fold lower than

the brightest fluorophores such as phycoerythrin. This

will likely be overcome with new modalities that are

under investigation to increase the number of metal

isotopes linked to an individual antibody [35,36].

As will be discussed below, the lanthanides dominate as

the group of metals compatible with current polymer tag

chemistries. However, in order to expand the number of

simultaneously measureable parameters, new chelation

chemistries are under development with the aim of

including isotopes with oxidation states other than +3,

such as the noble metals. Their atomic mass falls within

the range suitable for mass cytometry and could thus

increase the panel of metal-tagged antibodies available

for single-cell analysis by 20 or more.

Assigning stable metal isotopes to
measurements of cellular parameters
At present, a total of 37 purified, stable lanthanide iso-

topes are available and compatible with the metal chelat-

ing polymer chemistry (Figure 2). Of those, 27 are

available at enrichment purities above 97 percent; the

rest are available at enrichment purities above 92 percent.

Care must be taken when assigning antibodies to isotopes

to ensure that impurities in other channels do not result in

false-positives during analysis. Additionally, certain

metals are prone to oxidation, which results in signal in

other channels. For example, measurements of gadoli-

nium 157 are prone to interference from +16 oxidation of

praseodymium 141. In addition to the lanthanides,

indium, a post-transition metal, has two isotopes that

are compatible with the chelating chemistry, but their

sensitivity is low and thus only suitable for detection of

highly abundant proteins, such as CD45 expressed on

leukocytes. One additional parameter can be measured

with quantum dots (Q-dots) using the cadmium that is

their major constituent.

Given the absence of light scatter properties to record a

cell event, measurement of rhodium or iridium DNA

intercalators, as well as a cell event-induced ion cloud

duration measurement (‘cell length’) can be used to

demarcate cells in terms of their DNA content and

approximate size, respectively [26,32]. A variety of other

measurements (viability, cell cycle and multiplexing bar-

code reagents) are discussed below, bringing the total
www.sciencedirect.com
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Figure 2

In

Antibodies, nucleic acids probes, other

Rh Pd Cd I Ir Pt

La Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

103

Barcoding QDots Cell CycleDNA DNA Viability

113
115

159139 161
162
163

141 165142
143
144
145

166
167
168
170

147
149
152
154

169151
153

171
172
173
174

155
156
157
158

175

102
104
105

110
111
112

127 191
193

194
195
196

146
148
150

176160

106
108
110

114

Special markers

Periodic Table

Current Opinion in Immunology

A large number of metals are available for a variety of measurements. The lanthanides provide 37 stable isotopes for measuring antigen-bound

antibodies, MHC tetramers and nucleic acid probes with high sensitivity. Indium provides two low-sensitivity channels for highly expressed markers,

and quantum dots provide one additional channel (cadmium). Rhodium and iridium, as DNA intercalators, register a cell event. Platinum, in the form of

cisplatin:sulfur complexes, is used as a viability marker. Iodine, as iodo-deoxyuridine, is used for cell cycle measurements. Six palladium isotopes

allow for mass tag ‘barcoding’ and multiplexed measurement of samples.
number of quantifiable parameters for a single cell to 52.

It might be possible in the future to measure forward and

side scatter before introduction of each cell into the ICP-

MS plasma. Likewise, it might be possible to sort cells by

cleaving the reporter elements from the cells before

introduction into the plasma and using those readouts

to trigger a standard cell sorter.

Adapting ICP-MS to measuring single-cell ion
clouds
It was necessary to adapt the ICP-MS to retain the

temporal information of a multi-ion cloud derived from

a single cell [23,31,32]. As with conventional ICP-MS,

liquid samples, but now containing a cell suspension, are

nebulized into single-cell droplets, rapidly dried in a

heated spray chamber and then delivered into the central

channel of the 7500 K argon plasma where they are

vaporized, atomized and ionized to create clouds of ions

that correspond to the cells. The ion cloud derived from a

single cell has a measurement span of approximately 200–
300 microseconds. Therefore, in order to measure the

composition of each cloud fully, a fast and simultaneous

mass analyzer is required. This ruled out the use of

quadrupole and magnetic sector mass analyzers because

they detect one isotope at a time and require 200 micro-

seconds or more to switch between measured isotopes.
www.sciencedirect.com 
Instead, a time of flight (TOF) analyzer was used. This

measures the complete mass spectra ‘simultaneously’ in

13 microsecond pulses and captures the entire cohort of

ions derived from a single cell over the 200–300 micro-

second ion cloud duration. This restricts sample through-

put to 1000 cells per second.

Developing the mass cytometry tool kit
Of fundamental importance is the observation that fluor-

escence and mass cytometry yield very comparable

results when analyzed by traditional 2D flow plots, histo-

grams and heat-maps [37��,38��]. Yet there are clear

differences between the two platforms. Although the

deep dive into a single cell at the level of greater than

45 parameters provides an unprecedented level of detail

unavailable by fluorescence, the latter platform efficiently

determines measures of, for example, cellular calcium

and reactive oxygen species, for which as yet there are no

mass cytometry equivalents. However, over the past year

a number of new reagents have been created for mass

cytometry that can now be incorporated into the ‘tool kit’

as discussed below.

Data normalization with bead standards
As with any quantitative technology, there is a stringent

requirement for internal and external reagent standards
Current Opinion in Immunology 2013, 25:484–494
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for data normalization. In the case of mass cytometry,

crucially, variation in instrument performance can be

caused by factors such as instrument calibration, fluctu-

ations in plasma and build-up of cellular debris in the

sample introduction components. In order to normalize

for these factors, polystyrene beads infused with precise

amounts of several lanthanide isotopes are acquired sim-

ultaneously with every sample. A multiplicative correc-

tion derived from the bead signature is now routinely

applied to the raw mass cytometry data before any further

analysis takes place [39�]. The software for its imple-

mentation is available at www.cytobank.org/nolanlab.

Increasing throughput and decreasing
variability by mass tag barcoding
Amine-reactive fluorescent dyes, such as Pacific Blue,

Alexa Fluor 488, Alexa Fluor 700 and Alexa Fluor 750

each attached to N-hydroxysuccinimidyl (NHS) ester, can

be used in different combinations for fluorescence ‘barcod-

ing’ of separate samples that are subsequently pooled,

stained in a single tube with a fluorescently-tagged anti-

body panel and analyzed simultaneously on a flow cyt-

ometer. Data are then deconvoluted according to the

fluorescent barcode signatures of the component samples

[40]. There are three significant advantages to sample

barcoding: (i) all samples are stained in the same tube

with the same antibody mix, eliminating cell-to-antibody

ratio-dependent effects on staining, (ii) reduced antibody

consumption and (iii) increased sample throughput.

These principles can apply to barcoding reagents avail-

able for mass cytometry (mass cell barcoding). In a recent

study, metal barcode reagents were prepared by chelating

lanthanides with a bifunctional macrocyclic compound,

maleimido-mono-amide-DOTA (mDOTA), which labels

cells by covalent attachment to intracellular thiol groups.

Samples were labeled with a unique binary combination

of seven mDOTA-lanthanide reagents, multiplexed and

deconvoluted to accurately recover samples with given

barcodes. This foundational study lends support to the

use of metal barcoding reagents in mass cytometry [41��].
Unlike fluorescence-based cytometric analysis, a fluidics

purge lasting several minutes is required between sample

introductions on the mass cytometer. The throughput

gained by barcoding is thus particularly significant. As a

refinement of the barcoding reagents used in the pub-

lished study, the mDOTA-lanthanides have now been

replaced with six palladium isotopes. These have masses

(102-110) below that of the smallest lanthanide and there-

fore do not occupy channels that can otherwise be used

for metal-tagged antibodies (E. Zunder, G. Behbehani, R.

Finck, C. Thom, G. Nolan manuscript in preparation).

Cell viability determinations
A large set of fluorescence-based reagents exists with

which to measure cell viability. They operate on the

principle that a compromised cell with a damaged plasma
Current Opinion in Immunology 2013, 25:484–494 
membrane permits reagent entry into the cytoplasm,

whereas a healthy cell with an intact plasma membrane

does not. Specifically, reagents are available that: (i)

intercalate non-covalently into DNA (e.g. 7-aminoactino-

mycin D (7-AAD) or propidium iodide) [42,43], (ii) cova-

lently attach to DNA (TdT dUTP nick end labeling

(TUNEL) [44] (iii) covalently attach to proteins (Invitro-

gen Fixable LIVE/DEAD1) [45], and (iv) monitor altera-

tions in mitochondrial membrane potential (differences

in fluorescence of the monomeric and aggregate forms of

5,50,6,60-tetrachloro-1,10,3,30 tetraethylbenzimidazolylcar-

bocyanine iodide (JC-1)) [46]. Similarly, a variety of

reagents is available for determination of cell viability

by mass cytometry and operates under the same prin-

ciples as fluorescent reagents, albeit with a different

readout. These include rhodium and iridium-containing

metal-intercalators [26] and an amine-reactive chelator,

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

mono (N-hydroxysuccinimide ester) (DOTA-NHS-ester)

[38��]. Recently, a protocol was described for using cis-

platin to determine cell viability [47�]. Although well

known as a chemotherapeutic agent because of its ability

to form extremely stable DNA-platinum adducts, cispla-

tin has an alternative activity in which it reacts on a much

more rapid timescale (minutes as opposed to days) with

protein thiols, forming covalent platinum–sulfur bonds.

Furthermore, in an independent study, acrylamide poly-

mers bearing platinum or palladium recognized non-

viable cells [48]. Platinum has six stable isotopes, of which

three are dominant (194, 195 and 196 Da) and well

separated from the lanthanides, making cisplatin an ideal

reagent for determinations of cellular viability by mass

cytometry.

Measuring the cell cycle by mass cytometry
No biological evaluation would be complete without

including measurements of cell cycle phase. An abun-

dance of fluorophore-based reagents have been used for

decades to stage cells on the basis of their DNA content

using traditional flow cytometry. Included in the list are

supra-vital stains in the Hoechst group, such as 40,6-

diamidino-2-phenylindole (DAPI) that bind to A-T-rich

regions within the minor groove of DNA, or membrane-

impermeable reagents such as propidium iodide and

bromo-deoxyuridine [3,49]. These fluorescent stains

can all be used with a limited number of antibodies that

characterize a specific cell cycle phase.

In a recent study, Behbehani et al. designed a panel of

metal-chelated antibodies with which to perform a com-

prehensive analysis of the cell cycle progression machin-

ery [37��]. The panel included antibodies against cyclins,

phosphorylated retinoblastoma (Rb), phosphorylated

Cdk1, phosphorylated histone H3 and Ki67 to denote

cells in cycle covering the G0, G1, G2 and M phases. Of

its many roles, retinoblastoma is pivotal for cell cycle

progression, with a complex mechanism defining its role
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in G1 to S progression [50,51]. However, the antibody

used here was against an epitope encompassing residues

pS807 and pS811, which are substrates for cyclin C/Cdk3

and are necessary for quiescent cells to enter into cycle

[52]. To identify cells in S phase, multiple studies have

used halopyrimidines (bromo-deoxyuridine, iodo-deox-

yuridine and chloro-deoxyuridine) which become incorp-

orated into newly synthesized DNA. Antibodies

recognizing these groups necessarily require a DNA

denaturation step to gain access to the modified site

[53,54]. However, iodo-dexoyuridine, without an accom-

panying antibody, can be measured directly by mass

cytometry: the incorporated iodine in the newly synthes-

ized DNA has an atomic mass of 127, which falls within

the requisite range for mass cytometry. Its inclusion in the

panel gave a direct and clear measure of the percentage of

S-phase cells which was also beneficial in increasing the

resolution between the G1 and G2 phases.

Using a variety of cancer cell lines, cycling T lymphocytes

and primary human bone marrow, Behbehani et al. ident-

ified all cell cycle phases with a core panel: p-Rb (pS807/

S811), IdU, cyclin B and p-Histone H3 (pS28). Impor-

tantly, the cell cycle phases were validated in side-by-side

measurements by fluorescence flow cytometry [37��].
The importance of this study lies in the ability to now

measure many other biological parameters within the

context of the cell cycle. For example, signaling, DNA

damage, and metabolic pathways can now be examined at

defined phases in the cell cycle (G. Behbehani, W. Fantl,

G. Nolan, S. Lowe, P. Mallik, unpublished). In the area of

infectious disease, vaccinia, influenza and hepatitis C

virus infections are all known to alter cell cycle pro-

gression [55–58]. Conversely the host cell cycle affects

the replication of viruses such as Ebola virus, in which

case the virus depends on actively proliferating host cells

for replication itself [59]. This core marker set would be

equally significant in the development of therapeutic

agents, many of whose activities are known to be influ-

enced by cell cycle state [60–64].

Measurements of cytokines: regulators of
immune cell subsets and beyond
Traditional flow cytometry has greatly benefited from

single-cell measures of cytokine activity. The cytokine

superfamily includes interleukins, chemokines, colony-

stimulating factors, interferons, as well as the transform-

ing growth factor and tumor necrosis factor families, all

with a large array of diverse biological functions. They

have well-described functions in innate immunity

(inflammation, chemotaxis, allergy, macrophage and

NK cell activation) as well as in adaptive immunity

(cellular and humoral) [65–72]. However, cytokines are

now known to be produced by and mediate their effects

on cells other than immune cells and have been impli-

cated in the pathologies of, for example, cancer, stroke

and pulmonary arterial hypertension [73–75].
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Thus, given their far-reaching effects in multiple tissues,

defining cellular phenotypes based on their cytokine

expression is another essential parameter to include in

the mass cytometry toolkit. Fluorescence-based flow

cytometry protocols have measured cytokine production

in a variety of T cell subsets [76–79]. Recently, mass

cytometry applied to CD8+ T cells after stimulation with

anti-CD3, anti-CD3/anti-CD28 or PMA/ionomycin has

remarkably revealed there to be about 200 distinguish-

able subtypes based on the combinatorial diversity of the

nine functional attributes, with even greater diversity

revealed when taking into account different expression

patterns of surface markers [80��]. This study has set the

stage for measuring the functional diversity of both

immune and non-immune cell subsets.

Major histocompatibility class-peptide
tetramers conjugated to metal-chelating
polymers
Antigen-specific T cell subsets are generated when their

T cell receptors interact with pathogen-derived peptide-

major histocompatibility complexes expressed on antigen

presenting cells [81]. At a given moment, there will be

numerous T cell subsets throughout the body with differ-

ent antigen specificities. However, their low frequency

and low affinity interaction of their receptor with peptide-

bound MHC precluded a detailed characterization of

their properties. To circumvent this problem, Altman

and Davis constructed a peptide-MHC tetramer in which

four identical biotinylated MHC-peptide molecules were

complexed with streptavidin conjugated to a fluorophore,

resulting in increased avidity [82]. The peptide-MHC

complex only binds to the specific T cells that respond to

that peptide. The tetramer can then be detected by flow

cytometry via the fluorescent label [82,83]. Recently, the

fluorophore on streptavidin was replaced by a metal-

chelating polymer allowing a multidimensional analysis

to be performed by mass cytometry with a panel of

cytokine antibodies as described above. In this way it

was possible to identify 56–106 combinations of func-

tional attributes for several viral-specific T cell subsets,

revealing a far more complex view of the cytokine net-

work than seen before [80��].

Building panels of thirty-something antibodies
for deep proteomic profiling
One undisputed advantage of single-cell mass cytometry

is the ability to measure multiple parameters on a single-

cell basis, without the need to compare smaller panels or

computationally join data files from separate smaller

antibody panels [5,7]. As mentioned above, most isotopes

are assigned to antibodies, as they are at the crux of the

mass cytometry ‘tool kit.’ As with any antibody, the

conditions for their use must be optimized. The key

steps are conjugation to the metal-containing polymer

and performing the appropriate titrations to measure

signal-to-noise ratios (also referred to as ‘stain index’).
Current Opinion in Immunology 2013, 25:484–494
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Panels can be designed with up to 45 antibodies

focused completely on surface markers to delineate

cellular hierarchy, or a combination of surface markers

and intracellular signaling molecules. The latter are

focused on the activation states of intracellular sig-

naling pathways. This approach has provided new

information about established cell types, as well as

previously unidentified cell types revealed by new

combinations of surface markers. In addition to provid-

ing an increased understanding of the immune system,

mass cytometry can also provide new information about

solid tumors. Using appropriate protocols to dissociate

tumors [84,85] into their constituent single cells, new

cellular hierarchies have been revealed in ovarian can-

cer (J. Stewart, B. Neel, B. Bodenmiller, W. Fantl and

G. Nolan, unpublished). This increased level of detail

regarding signaling potential at the single-cell level,

regardless of the tissue of derivation, provides a new

backdrop for drug discovery.

Deep proteomic profiling of the human
immune system
The first deep proteomic study evaluated signaling

responses in specific immune cell subsets within the

hematopoietic continuum [28�,38��]. Two panels each

comprising 31 metal polymer-conjugated antibodies were

assembled. The ‘phenotypic panel’ was designed to

measure surface molecules expressed on immune cell

subsets, and successfully identified known and distinct

immune cell subsets, including B, T, NK and DC cells

and monocytes. However, transitional cells were also

seen, not previously captured in prior studies, but that

are consistent with an immune continuum rather than

abrupt conversions to distinct differentiation stages. The

second panel maintained 13 surface marker antibodies

from the first panel but had an additional 18 intracellular

signaling molecules representing the activation status for

a number of pathways. Human bone marrow was treated

with twenty extracellular modulators including growth

factors, cytokines, chemokines and three small molecule

kinase inhibitors (dasatinib, Jak1 inhibitor and the U0126

Mek inhibitor). Thus, Ras/Raf/Erk, NF-kB, p38/MAP-

KAPK2, STATs 1, 3 and 5, CREB and BCR signaling

were all included and measured simultaneously [38��].
Using Spanning-tree Progression Analysis of Density-

normalized Events (SPADE, discussed in more depth

below) signaling responses were seen within tight cellular

boundaries as well as across multiple immune cell types.

This system-level view is the first in a series of studies to

generate a human immune reference map as a resource

for therapeutic and vaccine studies (Z. Bjornson, G.

Fragiadakis, M. Spitzer, M. Davis, G. Nolan, unpub-

lished).

This foundational study also demonstrated a paradigm for

multi-dimensional analysis of complex primary tissues,

namely establishing a phenotypic hierarchy using surface
Current Opinion in Immunology 2013, 25:484–494 
markers and then selecting a subset of surface marker

antibodies to combine with antibodies that measure acti-

vated intracellular signaling molecules. Since then, many

additional antibody panels have been optimized to inter-

rogate a broad variety of cellular functions including:

receptor tyrosine kinase signaling, epithelial-mesenchy-

mal transition, the Wnt pathway, apoptosis, survival,

proliferation, DNA damage response, cell cycle, metab-

olism, embryonic stem cells and induced pluripotent

stem cells. The value of this technology platform is in

its ability to measure multiple cellular functions, which

will be invaluable for understanding disease states. How-

ever, it is first necessary to have the tools to analyze high-

dimensional data.

Analyzing high-dimensional mass cytometry
data
Although mass and fluorescence-based flow cytometry

use entirely different instrumentation, the data from both

platforms provide equivalent information [37��,38��].
However, there are several notable differences in the

data. In fluorescence cytometry, significant background

signals arise from spectral overlap and auto-fluorescence,

the natural fluorescence of cellular structures. In mass

cytometry, because ‘auto-mass’ does not exist, there is

minimal background and consequently less spread around

zero. Nonetheless, in both cases, a transformation such as

the inverse hyperbolic sine function is typically applied to

compress values around zero, resulting in a more coherent

negative population (one that lacks a marker of interest).

However, the standard transformation used with mass

cytometry data does not compress the data as strongly as

standard transformations for fluorescence data, resulting

in data that is truer to the measured signal (Fig. S2 in

[38��]).

We and others have adapted a variety of algorithms to

the analysis of high-dimensional, single-cell mass cyto-

metry data. One obvious choice for processing large

datasets is clustering, the grouping of similar cells,

which has been applied extensively to microarray data

[86,87]. One of the first algorithms developed to ana-

lyze mass cytometry data was SPADE [38��,88��,89]. It

uses hierarchical, agglomerative clustering after per-

forming density-dependent downsampling in an effort

to preserve rare cell types that would otherwise be

drowned out by far more frequent cell types. The

resulting clusters can be placed into a minimum-span-

ning tree [38��], or into a more highly connected graph

with a force-directed layout (E. Zunder and G. Nolan,

manuscript in preparation).

Automatic determination of known, biologically relevant

clusters is still a difficult problem in flow cytometry data

analysis because it is difficult to determine the edge of

where one cell population begins and the other ends. This

is an especially difficult problem when one considers
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transitions and progressions where cells dynamically

exist along a framework of cell states. On the one hand,

under-segmentation results in clusters containing

multiple cell types whereas on the other hand, over-

segmentation needlessly divides homogenous cell

types. In a new approach, over-segmentation of cell

subsets and their subsequent merging by affinity propa-

gation resulted in larger, biologically relevant cell sub-

populations [90] (T. Chen, M. Clutter et al., in

submission). This technique works especially well for

analyzing continuous progressions of cells, such as the

cell cycle, where manual demarcation of cell subsets is

difficult.

Recently, viSNE, a visualization tool for high-dimen-

sional single-cell data based on the t-distributed sto-

chastic neighbor embedding (t-SNE) algorithm [91,92],

was applied to mass cytometry datasets from healthy

and leukemic bone marrow [93]. viSNE generates a

two-dimensional map that reflects the proximity of cells

to one another in high-dimensional space. This

approach works well but is currently unable to process

a large number of cells. One established statistical tool,

principle component analysis (PCA), has also been

applied to mass cytometry datasets. It derives summary

variables to capture as much variation as possible in as

few terms as possible to aid visualization [94].

This technique has successfully been applied to

CyTOF data [38��,80��]; however, its ability to fully

separate many distinct cell populations remains

limited.

Summary and conclusions
Reiterating a central theme of this essay, we have dis-

cussed how mass cytometry can be applied to advance

traditional flow cytometry assays. Although mass cytome-

try, as it stands with panels of 45 parameters in routine

use, provides a level of detail about protein function not

previously possible, further improvements are needed.

These include increased sensitivity, changes in the

instrumentation to increase sample flow rate and to

reduce sample loss as well as new computational tools.

Regardless, multi-dimensional, single-cell mass cytome-

try is currently positioned to have dramatic consequences

on drug development and therapeutic programs for

multiple indications ranging from infectious disease, can-

cer, inflammatory conditions and trauma.
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with multiple other measurements of cellular function in complex sam-
ples. As a proof of principle, the authors simultaneously measured the cell
cycle state of 25 different immunophenotypic populations of healthy
human bone marrow.
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First large-scale demonstration of developed reagents and analysis
methods for single-cell mass cytometry and demonstration of merging
multiple datasets through mutual information. Besides being the first
practical demonstration of the technology, it also provided an analytical
resource of regulatory signaling information in the human hematopoietic
and immune system that continues to be utilized in subsequent inves-
tigations in a fashion akin to gene expression and genomic sequence
repositories (www.cytobank.org/nolanlab).
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Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fantl W,
Pe’er D, Nolan GP, Bendall SC: Normalization of mass
cytometry data with bead standards. Cytometry A 2013.

Bead-based normalization of mass cytometry data uses the signal inten-
sities of metal-embedded beads to account for the effects of instrument
variation and thus enables a more accurate interpretation of the biological
differences between samples measured on the mass cytometer. The
method which is implemented on freely available software applies a
multiplicative correction derived from slopes fitted between smoothed
www.sciencedirect.com
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Appendix B —  

Titration Slides for Tumor Panel 
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Date Conjugated: 2/13/2013 
Titration 2/26/13 
Biolegend 312202 
Clone: Hl10a 

Selected Conc. : 4ug/ml 
0ug/ml        1ug/ml        2ug/ml      4ug/ml         8ug/ml 

    0ug/ml                1ug/ml                 2ug/ml                 4ug/ml                 8ug/ml 



-2
0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10

R
aw

 M
ed

ia
n 

Va
lu

e 

Antibody Concentration in ug/ml 

157 (Gd):  SNAIL 

OVCAR3
HCT116

157(Gd):  SNAIL 

Date Conjugated: 8/28/13 
Titration: 9/10/13 
eBiosciences 14-9859-82 
Clone: 20C8 

Selected Conc. : 6ug/ml 
6μg 
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Stim: 125uM PV04 for 10min 
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Selected Conc. : 4ug/ml 
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Lab Stock 
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Selected Conc. : 6ug/ml 

Cells: MESC treated with LIF  
6μg 
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162 (Dy):  STAT5 

Jurkats
PVO4

162 (Yb):  pSTAT5 

Date Conjugated: 7/16/13 
Titration: 8/16/13 
BD 624084 
Clone: NA 

Selected Conc. : 4ug/ml 



163 (Dy): Endoglin 

Conjugated: 8/28/13  
Titration: 9/3/13 
Biolegend 323202 
Clone: 43A3 

Selected Conc. : 4ug/ml 
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163 (Dy): Endoglin 

HELA
U937
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Antibody Concentration ug/ml 

164 (Dy): Titration of CD24 in PBMCS 

CD14+
Monocytes

CD3+ T Cells

CD3-CD14-B+
NK Cells

B Cells

164 (Dy): CD24 

Lab Stock 
Titration Set 1 
8/21/2012 
Biolegend 311102 
Clone: ML5 

Selected Conc. : 4ug/ml 

1ug/ml        2ug/ml      4ug/ml      8ug/ml 

        1ug/ml                 2ug/ml                 4ug/ml              8ug/ml 



-1000

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

R
aw

 M
ed

ia
n 

Va
lu

e 

Antibody Concentration ug/ml 

165 (Ho): pRb (pS807/811) 

Unstim
Nocodazole

165 (Ho): pRb 
(pS807/811) 

Selected Conc. : 4ug/ml 

Conjugated: 9/21/12  
Titration: 10/3/12 
BD 558389 
Clone: J112-906 

0ug/ml      1ug/ml        2ug/ml          4ug/ml          8ug/ml 

    0ug/ml                1ug/ml                 2ug/ml                 4ug/ml                 8ug/ml 
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Antibody Volume in ul 

166 (Er):  CD44 

NIH3T3
Hela

166 (Er): CD44 

Date Conjugated: DVS 
Titration: 9/24/13 
DVS 3166001B 
Clone: BJ18 

Selected Conc. : 0.25ul 
0ul        0.125ul     0.25ul     0.5ul        1ul           2ul 

NIH 3T3 
    HELA 

0ul               0.125ul            0.25ul             0.5ul                  1ul                  2ul 

NIH 3T3 
    HELA 
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167 (Er): PAX8 

Jurkats
OVCAR3

167 (Er): PAX8  
 

Selected Conc. : 8ug/ml 

Conjugated: 6/20/2013 
Titration:  6/21/13 
ProteinTech 10336-1-AP 
Clone: Polyclonal 

  Jurkats 
OVCAR3 

  Jurkats 
OVCAR3 
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168 (Er): Titration of CD13 in PBMCS 

CD14+
Monocytes

CD3+ T Cells

CD3-CD14-B+
NK Cells

B Cells

168 (Er): CD13 

Selected Conc. : 4ug/ml 

Conjugated: 9/21/12  
Titration: 10/3/12 
BD 624084 
Clone: L138 

1ug/ml        2ug/ml      4ug/ml 

1ug/ml                    2ug/ml                 4ug/ml 



-5

0

5

10

15

20

25

30

0 2 4 6 8 10

R
aw

 M
ed

ia
n 

Va
lu

e 

Antibody Concentration ug/ml 

169 (Tm): pCHK1 (pS345) 

Untreated
Etoposide

Selected Conc. : 8ug/ml  

169 (Tm): pCHK1 
(pS345) 

Lab Stock 
Titration Set 1 
8/16/2012 
CST 2535 
Clone: 40H19 

0ug/ml        1ug/ml       2ug/ml      4ug/ml              8ug/ml 

    0ug/ml                1ug/ml                 2ug/ml                 4ug/ml                 8ug/ml 
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170 (Er): Active Non-Phosphorylated B-
Catenin 

Jurkats
OVCAR3
293_LiCl

170 (Er): Non 
Phosphorylated Beta 

Catenin 

Selected Conc. : 8ug/ml 

Conjugated: 6/20/2013 
Titration: 6/21/13 
CST 8480 
Clone: D10A8 

   Jurkats 
OVCAR3 
 293 LiCl 

   Jurkats 
OVCAR3 
 293 LiCl 
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Antibody Concentration in ug/ml 

171 (Yb): cPARP 

Jurkats

24hr Etoposide
Jurkats

171 (Yb): cPARP  
 

Date Conjugated: 8/21/13 
Titration: 9/10/13 
BD 624084 
Clone:  NA 

Selected Conc. : 4ug/ml 
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Antibody Concentration in ug/ml 

172 (Yb): pS6 (pS235/pS236) 

Jurkats
PMA

172 (Yb): 
pS6 (pS235/pS236) 

Conjugated: 4/10/2013 
Titration: 4/15/13 
BD 624084 
Clone: N7-548 

Selected Conc. : 4ug/ml 0ug/ml        1ug/ml       2ug/ml      4ug/ml          8ug/ml 

    0ug/ml                1ug/ml                 2ug/ml                 4ug/ml                 8ug/ml 
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Antibody Concentration in ug/ml 

173 (Yb): Mesothelin 

Hela
OVCAR3

173 (Yb): Mesothelin 

Date Conjugated: 
Titration: 9/24/13 
Rockland 200-301-A87 
Clone: MB-G10 

Selected Conc. : 1ug/ml 
    0ug/ml        0.125ug/ml     0.25ug/ml   0.5ug/ml       1ug/ml          2ug/ml 

OVCAR3 
     HELA 

    0ug/ml         0.125ug/ml      0.25ug/ml         0.5ug/ml            1ug/ml              2ug/ml 

OVCAR3 
     HELA 
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174 (Yb): pCREB 

U937
PMA

174 (Yb): pCREB 
(S133) 

Date Conjugated: 7/22/13 
Titration: 8/16/13 
CST 9198BF 
Clone: 8763 

Selected Conc. : 2ug/ml 



175 (Yb): 
Total p53 

Unstim 
 
 
 
 
 
20mM HU 

Conjugated: 5/7/2013 
Titration Set 3 
CST 2524 
Clone: 1C12 

Selected Conc. : 4ug/ml 

    0ug/ml            1ug/ml           2ug/ml            4ug/ml            8ug/ml 

0ug/ml            1ug/ml           2ug/ml            4ug/ml            8ug/ml 



0.25ug/ml    0,5ug/ml    1ug/ml    2ug/ml 
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176 (Yb): pHH3 

Unstim
Nocodazole

176 (Yb): pHH3 
(pS28) 

Lab Stock 
Titration Set 1 
8/21/2012 
Biolegend 641002 
Clone: HTA28 

Selected Conc. : 1ug/ml 

0.5ug/ml                 0.5ug/ml                 1ug/ml                 2ug/ml 



Appendix C —  

OVCAR  — Immune Panel 

Titrations 2012-2013 



OVCAR Immune Panel 1 – Metal assignation 
In113 CD235/CD61 
In115 HLA-DR 
La139 CD45 
140Ce NKG2D 
Pr141 CCR6 
Nd142 pMAPKAPK2 (pT334) 
Nd143 pSTAT1 (pY701) 
Nd144 CD11b 
Nd145 CD4 
Nd146 CD8 
Sm147 p-H2AX (pS139) 
Nd148 CD123 
Sm149 p-NFkB (pS529) 
Nd150 CD206 
Eu151 p-ERK (pT202/pY204) 
Sm152 Ki67 (total) 
Eu153 CD45RA 
Sm154 pSTAT3 
Gd155 CD19 
Gd156 BDCA2 

Gd157p CD11c 
Gd158 CD33 
Tb159 CCR7 
Gd160 CD14 
Dy161 CD66b 
Dy162 pSTAT5 
Dy163 CXCR3 
Dy164 ICOS 
Ho165 CD16 
Er166 FoxP3 
Er167 CD163 
Er168 CD68 
Tm169 CD25 
Er170 CD3 
Yb171 cleaved-PARP (@N214) 
Yb172 pS6 (pS235/pS236) 
Yb173 LAG-3 
Yb174 CREB 
Lu175 PD-1 
Yb176 CD56 



CD235a/b 113In (Surface) 

Human Bone Marrow 

Raw Median Values 95th percentile 

Clone: HIR2 (Biolegend) 
Conjugation: 2013-01-24  
Titration: 2013-03-15 
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Ab concentration (ug/mL) 

CD235 113In 

CD4 T cells

CD45-

B cells

Staining conc.: 1.5ug/mL 



CD61 113In(Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: VI-PL2 (BD) 
Conjugation: 2013-01-24 
Titration: 2013-04-26 
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Ab concentration (ug/mL) 

CD61 113In 

CD4 T cells

Monos

Staining conc.: 1ug/mL 



HLA-DR 115In (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: L243 (Biolegend) 
Conjugation: 2013-08-19 
Titration: 2013-09-05 
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Concentration (ug/mL) 

HLA-DR 115In 

B cells

CD14+

CD3+

Staining conc.: 2ug/mL 



CD45 139La (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 
OVCARs – Fixed/Frozen 

Raw Median Values 95th percentile 

Clone: HI30 (Biolegend) 
Conjugation: 2013-08-19 
Titration: 2013-09-05 
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Concentration (ug/mL) 

CD45 139La 

PBMCs
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Staining conc.: 1ug/mL 



NKG2D 140Ce (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: () 
Conjugation: 2013-08-19  
Titration: 
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Concentration (ug/mL) 

NKG2D 140Ce 

B cells

CD56bright
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Staining conc.: 8ug/mL 



CCR6 141Pr (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: G034E3 (DVS) 
Conjugation: DVS 
Titration: 2013-08-27 
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pMAPKAPK2 142Nd (ICS) 

U937,  TNFa stim, fixed/frozen 

Raw Median Values 95th percentile 

Clone: 27B7 pT334 (CST) 
Conjugation: 2013-08-26 
Titration: 2013-10-10 
 

Staining conc.: 2ug/mL -5
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Ab concentration (ug/mL) 
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Unstim

TNFa



pSTAT1 143Nd (ICS) 

Splenocytes, IFNa stimulated, fixed/frozen 

Raw Median Values 95th percentile 

Clone: 4a pY701 (BD) 
Conjugation: 2013-08-21 
Titration: 2013-10-10 
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Ab concentration (ug/mL)) 

pSTAT1 143Nd 

Unstim
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Staining conc.: 4ug/mL 



CD11b 144Nd (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone:  IRCF44 (DVS) 
Conjugation: DVS 
Titration: 2012-08-16 

Staining conc.: 1ul/test 
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Ab concentration (ul/test) 

CD11b 144Nd 

CD4+

CD14+



CD4 145Nd (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone:  RPA-T4 (DVS) 
Conjugation: DVS 
Titration: 2012-08-16 

Staining conc.: 0.5ul/test 
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CD8 146Nd (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone:  RPA-T8 (DVS) 
Conjugation: DVS 
Titration: 2012-08-16 

Staining conc.: 0.5ul/test 

0

100

200

300

400

500

600

700

800

0x 0.25x 0.5x 1x 2x 4x

Ra
w

 M
ed

ia
n 

Va
lu

es
 

Ab concentration (ul/mL) 
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pH2AX 147Sm (ICS) 

Jurkat – Etoposide treated 

Raw Median Values 95th percentile 

Clone: JBW301 pS139 (Millipore) 
Conjugation: 2013-02-13 
Titration: 2013-02-14 
 

Am re-conjugating/re-titrating 
Staining conc.: 4ug/mL 

8ug 4ug 2ug 1ug 0ug 

8ug 4ug 2ug 1ug 0ug 



CD123 148Nd (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: 6H6 (Biolegend) 
Conjugation: 2013-08-26 
Titration: 2013-08-27 
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Concentration (ug/mL) 

CD123 148Nd 
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Staining conc.: 1ug/mL 



pNFkB 149Sm (ICS) 

Jurkat – TNFa stim 

Raw Median Values 95th percentile 

Clone: K10-895.12.50 pS529 (BD) 
Conjugation: 2012-09-19 
Titration: 2012-09-28 
 

Staining conc.: 4ug/mL 



CD206 150Nd (Surface) 

PBMCs – Unstim : Fixed/frozen 
  Stim: GMCS 10ng/mL 3 days  

Raw Median Values 95th percentile 

Clone: 19.2 (BD) 
Conjugation: 2013-08-26 
Titration: 2013-09-09 
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Concentration (ug/mL) 

CD206 150Nd 

Unstim

GMCSF-stim

Staining conc.: 2 ug/mL 



pERK 151Eu (ICS) 

U937 – PMA Stim 

Raw Median Values 95th percentile 

Clone:  20A pT202/Y204 (BD)  
Conjugation: 2013-02-12 
Titration: 2013- 10-01 
 

Staining conc.: 2 ug/mL 



Ki67 152Sm (ICS) 

HTC116 – Nocodazole treated  

Raw Median Values 95th percentile 

Clone: B56 totalKi67 (BD) 
Conjugation: 2013-03-15 
Titration: 2013-03-21 
 

Staining conc.: 2ug/mL 



CD45RA 153Eu (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: HI100 (DVS) 
Conjugation: DVS 
Titration: 2012-10-24 
 

Staining conc.: 0.5ul/test 

CD8 T cells 
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Ab concentration (ul/test) 

CD45RA 153Eu 
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pSTAT3 154Sm (ICS) 

Jurkat – PVO4 Stim 

Raw Median Values 95th percentile 

Clone: 4P STAT-3 pY705 (BD) 
Conjugation: 2013-07-16 
Titration: 2013-08-16 
 
 

Staining conc.: 6ug/mL 



CD19 155Gd (Surface) 

Raw Median Values 95th percentile 

Clone: HIB19 (BD) 
Conjugation: 2012-10-26 
Titration: 2012-11-01 
 

Staining conc.: 1ug/mL 

PBMCs – Live/frozen, thawed - rested 3h 
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23 

BDCA2 (CD303) 156Gd (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Clone: 201A (Biolegend) 
Conjugation: 2013-05-17 
Titration: 2013-05-22 

Staining conc.: 4ug/mL 

Presenter
Presentation Notes
2012-08-30



CD11c 157Gd (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: 3.9 (Biolegend) 
Conjugation: 2013-08-19 
Titration: 2013-08-27 
 

Staining conc.: 4ug/mL 
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CD33 158Gd (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: WM53 (DVS) 
Conjugation: DVS 
Titration: 2012-08-16 
 

Staining conc.: 0.5ul/test 
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CCR7 159Tb (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: 150503 (R&D systems) 
Conjugation: 2013-08-26 
Titration: 2013-08-27 
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Ab concentration (ug/mL) 

CCR7 159Tb 
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Staining conc.: 3ug/mL 



CD14 160Gd (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: M5E2 (DVS) 
Conjugation: DVS 
Titration: 2012-08-16 
 

Staining conc.: 1.5ul/test (epitope is MeOH sensitive) 
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CD66b 161Dy (Surface) 

Whole Blood – Smart tube buffer treated 

Raw Median Values 95th percentile 

Clone: G10F5 (Biolegend) 
Conjugation: 2013-05-01 
Titration: 2013-05-10 
 

Staining conc.: 2ug/mL 
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pSTAT5 162Dy (ICS) 

Jurkat – PVO4 Stim 

Raw Median Values 95th percentile 

Clone: 47 pY694 (BD) 
Conjugation: 2013-07-16 
Titration: 2013-08-16 
 

Staining conc.: 4ug/mL 



CXCR3 163Dy (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: G025H7 (Biolegend) 
Conjugation: 2013-05-17 
Titration: 2013-05-22 
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Ab concentration (ug/mL) 

CXCR3 163Dy 
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Staining conc.: 2ug/mL 



ICOS 164Dy (Surface) 

PBMCs – Live/frozen, thawed 
 – 24h stim PMA/Iono 

Raw Median Values 95th percentile 

Clone: C398.4A (Biolegend) 
Conjugation: 2013-08-19  
Titration: 2013-09-05 
 

Staining conc.: 2ug/mL 

CD8 T cells 
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CD16 165Ho (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: 3G8 (DVS) 
Conjugation: DVS 
Titration: 2012-08-16 
 

Staining conc.: 1ul/test 
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FoxP3 166Er (ICS) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: PCH101 (Ebioscience) 
Conjugation: 2013-08-26 
Titration: 2013-08-27 
 

Staining conc.: 8ug/mL 



CD163 167Er (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: GHI/61 (BD) 
Conjugation: 2013-08-26 
Titration: 2013-09-05 
 

Staining conc.: 6 ug/mL 
-1

0

1

2

3

4

5

6

7

0ug 0.5ug 1ug 2ug 4ug 8ug

Ra
w

 M
ed

ia
n 

Va
lu

es
 

Ab concentration (ug/mL) 

CD163 167Er 

CD3+

CD14+



CD68 168Er (ICS) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: Y1/82A (Biolegend) 
Conjugation: 2013-08-26 
Titration: 2013-08-27 
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CD25 169Tm (Surface) 

PBMCs – Live/frozen, thawed 
 – 24h stim PMA/Iono 

Raw Median Values 95th percentile 

Clone:  2A3 (DVS) 
Conjugation: DVS 
Titration: 2012-12-12 
 

Staining conc.: 1ul/test 
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CD3 170Er (Surface) 

PBMCs – Live/frozen, thawed - rested 3h 

Raw Median Values 95th percentile 

Clone: UCHT1 (DVS) 
Conjugation: DVS 
Titration: 2012-08-16 
 

Staining conc.: 0.5ul/test 
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cPARP 171Yb (ICS) 

Jurkat, – 24h Etoposide  

Raw Median Values 95th percentile 

Clone: F21- 852 (BD) 
Conjugation: 2013-08-21 
Titration: 2013-9-10 
 

Staining conc.: 4ug/mL 



pS6 172Yb (ICS) 

Jurkat – PMA stim 

Raw Median Values 95th percentile 

Clone: N7-548 pS235/S236 (BD) 
Conjugation: 2013-10-04 
Titration: 2013-04-15 
 
 

Staining conc.: 4ug/mL 



LAG-3 173Yb (Surface) 

PBMCs – Live/frozen, thawed 
 – 24h stim PMA/Iono 

Raw Median Values 95th percentile 

Clone: N/A (R&D systems) 
Conjugation: 2013-08-19  
Titration: 2013-09-05 
 

Staining conc.: 6ug/mL 
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pCREB 174Yb (ICS) 

U937 - PMA stim 

Raw Median Values 95th percentile 

Clone: 87G3 pS133 (CST) 
Conjugation: 2013-7-22 
Titration: 2013-8-16 
 

Staining conc.: 2ug/mL 



PD-1 175Lu (Surface) 

PBMCs – Live/frozen, thawed 
 – 24h stim PMA/Iono 

Raw Median Values 95th percentile 

Clone: EH12.2H7 (DVS) 
Conjugation: DVS 
Titration: 2013-09-05 
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CD56 176Yb (Surface) 

Raw Median Values 95th percentile 

Clone: NCAM16.2 (BD) 
Conjugation: 2013-01-24 
Titration: 2013-01-26 
 

Staining conc.: 1ug/mL 

CD8 T cells 

PBMCs – Live/frozen, thawed - rested 3h 
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CD56 176Yb (Surface) 

Raw Median Values 95th percentile 

Clone: NCAM16.2 (BD) 
Conjugation: 2013-01-24 
Titration: 2013-01-26 
 

Staining conc.: 1ug/mL 

PBMCs – Live/frozen, thawed - rested 3h 
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	Primary ovarian cancer (OC) represents a complex set of stem cell and cancer cell phenotypes embedded in a mixture of stromal and infiltrating immune cells.  This grant develops techniques and approaches using mass cytometry that organize the heterogeneity within and between patient tumors to enlighten mechanisms and clinical opportunities in the apparent chaotic structure of the cancer.  (1)  A preliminary mass cytometry OC dataset by a “social clustering” strategy finds cell neighborhoods in high dimensional space reveals that 18 out of 20 samples had clusters of apparent stem-cell expressing deterministic combinations of stem cell markers. (2) Two high dimensional antibody panels were optimized and assembled to interrogate the tumor and immune cell compartments. (3) Indivumed (Hamburg Germany) is established as source for acquiring high quality HG-SOC primary specimens from single-cell dissociated tumors obtained within 3 hours of resection. (4) A QC procedure was established that surveys tumor samples (including epithelial, mesenchymal and immune cells) prior to their resection (using Abs against cleaved cCaspase 3, cleaved cPARP, vimentin, E-cadherin and CD45) to focus resection procedures on viable non necrotic tissue. (5) Eight key cell lines which bear remarkable genetic similarity to primary HG-SOC tumors have been obtained [1] as standards for primary tumors.
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